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Power Semiconductor Diodes

A power semiconductor diode acts as a switch. It can be assumed as an ideal
switch for most applications, but in practice this is not the case. It is similar to an
ordinary pn-junction signal diode, but has larger power, voltage and current
handling capabilities. The frequency response (switching speed) is low compared
to signal diodes.

Diode Characteristics
A power diode is a two-terminal pn-junction device, as shown in Figures (1a,b).

Figure (1a): pn-junction Figure (1b): Diode Symbol

When the anode potential is positive with respect to the cathode, the diode is
said to be forward biased and the diode conducts. A conducting diode has a
relatively small forward voltage drop across it. When the cathode potential is
positive with respect to the anode, the diode is said to be reverse biased. Under
reverse-biased conditions, a small reverse current (known as the leakage
current) in the range of microampere to milliampere flows. The leakage current
increases slowly in magnitude with the reverse voltage until the avalanche or
zener voltage reached.

Figure (2a) shows the steady-state v-i characteristics of a diode. However, for
most applications, a diode can be regarded as an ideal switch with the
characteristics shown in Figure (2b).
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Figure (2): v-i characteristics of a diode

The v-i characteristics can be expressed by the Schockley Diode Equation as

  ID = I s( e

V D

nVT − 1)

where

  ID = current through the diode, (A)

  VD = diode voltage with anode positive with respect to cathode, (V).

  I s = leakage (reverse saturation) current, typically in the range of 10-6 to 
10-15 A.

n = empirical constant known as emission coefficient or ideality 
factor,  1 ≤ n ≤ 2 . Note that n depends on the material and physical 
construction of the diode. For germanium diodes n=1; for silicon
diodes n=2.

  VT = constant called thermal voltage and is determined from

  
VT =

kT

q

where
q : is the electron charge =1.6022x10-19 coulomb (C)
T :  is the absolute temperature in Kelvin (K=273+Co)
k:  is Boltzmann’s constant = 1.3806x10-23 J/K.

Thus
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V

T =
1.3806 x10 −23 x( 273 + 25 )

1.6022 x10 −19
= 2.8  mV

The diode v-i characteristics shown in figure (2a) can be divided into three
regions, as explained below.

Forward-biased region (  VD > 0 )
In this region, the diode current   ID  is very small if the diode voltage   VD  is less
than a specified value   VTD  (typically 0.7 V).   VTD is called the threshold voltage or
the cut-in voltage or the turn-on voltage. The diode conducts fully if   VD  is higher
than   VTD . Thus the threshold voltage   VTD  is the voltage at which the diode
conducts fully.

Example
Consider a diode of with  VD = 0.1 V ; n=1; and  VT = 25.8  mV . Find the diode
current.

  ID = I s( e

V D

nV
T − 1)

  ID = I
s
( e

0 .1

1x 0 .0258 − 1 ) = I
s
( 48 .23 − 1)

This can be approximated by

  ID ≈ 48 .23 I s

This approximation produces an error of 
  

1

48.23
x100 = 2.1% .  If this is acceptable,

then for   VD > 0.1 V , which is usually the case, and   ID >> I s  we can write

  ID = I s( e

V D

nVT − 1) ≈ I se

V D

nVT

Reverse-biased region (  V D < 0 )

In the reverse-biased region if   V D  is negative and 
  
V D >>V T , which occurs for

  V D < −0 .1 V , the exponential term becomes negligible and the diode current is
approximated as

  ID = I s ( e

V D

nVT − 1 ) ≈ − I s

This means that the diode current   ID  in the reverse direction is constant and
equals   I s .
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Breakdown Region
In this region the reverse voltage is high, normally greater than 1000 V. The
magnitude of the reverse voltage exceeds a  specified voltage known as the
breakdown voltage,  V BR. The reverse current increases rapidly with a small
change in the reverse voltage beyond the   V BR. It is often necessary to limit the
power dissipation within a permissible value to avoid damage.

Example 1
The forward voltage drop of a power diode is   V D = 1.2 V  at   ID = 300  A .
Assuming that n=2 and   V T = 25 .8  mV , find the saturation current   I s .

Solution:  We have

  ID = I s ( e

V D

nVT − 1 )

or

  300 = I s ( e

1.2

2x0 .0258 − 1)

which gives

  I s = 2.38371x10
−8

A

Reverse Recovery Characteristics
When a diode is in a forward conduction mode and then its forward current is
reduced to zero, the diode continues to conduct due to minority carriers stored in
the pn-junction and the bulk semiconductor material. The minority carriers
require a certain time to be neutralised.  This time is called the reverse recovery
time,   t rr , of the diode.

Figure (3) shows the reverse recovery characteristics of junction diodes.
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Figure (3)
Reverse Recover Characteristics: Soft recovery

Reverse Recovery Time (  t rr )
Time interval between the instant the current passes through initial zero crossing
during the changeover from forward conduction to reverse blocking condition
and the instant when the reverse current decays to 25% of its maximum (peak)
value,   I RR.
It consists of two components,   ta  and   tb . Thus

  t rr = t a + t b

The component   ta  is due to charge storage in the depletion region of the
junction. It represents the time between the crossing and the peak reverse
current. The component   tb  is due to charge storage in the bulk semiconductor
material. It represents the time between peak reverse current and when it decays
to 25%.

The ratio 
  

tb

ta

 is known as the softness factor. Thus

  
SF =

t b

t a

The peak reverse current can be expressed in reverse di/dt as

  
IRR =

di D

dt

Reverse Recovery Charge (  QRR)
The amount of charge carriers that flow across the diode in the reverse direction
due to changeover from forward conduction to reverse blocking condition. Its
value is determined from the area enclosed by the path of the reverse recovery
current. Thus the storage charge is approximately

  
QRR ≅

1

2
IRR t a +

1

2
IRR t b =

1

2
I RR t rr

Hence
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IRR =

2QRR

trr

Using

  
IRR =

di D

dt
gives

  
trr ta =

2QRR

diD / dt

Since usually   ta > tb , then   t rr ≈ t a , and

  
t rr ≅

2QRR

di D / dt

and

  
IRR ≅ 2QRR

diD
dt

Example 2
The reverse recover time of a diode is   t rr = 3 µs and the rate of fall of the diode

current is
  

diD

dt
= 30 A / µs . Determine

(a) the storage charge   QRR; and
(b) the peak reverse current   I RR.

Solution

From 
  
t rr ≅

2QRR

di D / dt
 we compute the storage charge as

  
QRR =

1
2

diD

dt
t
rr
2 = 0.5x30  A / µs x 3x10-6( )2

= 135  µC

  
IRR ≅ 2QRR

diD
dt

= 2x135 x10
−6

x30 x10
6 = 90  A

Diode Circuits
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In the following analysis, we assume that the reverse recover time and the
forward voltage drop are negligible, i.e.   t rr = 0  and   V D = 0 .

Diodes With RC Loads
Consider the diode circuit with an RC load shown in Figure (4).

Figure (4): RC circuit

When switch S1 is closed at t=0, the voltage relationship is derived as

  V s = vR + vC

  
= vR +

1

C
i  dt + vC ( t = 0 )∫

  vR = R i

Laplace Transform of both sides gives:

  

V s

s
= R I ( s ) +

1

Cs
I ( s )

 or

  

 I ( s ) =
V s

R( s +
1

RC
)

Inverse Laplace Transform gives

  
i( t ) =

V s

R
e

−
1

RC
t



                    Diodes

8

The voltage across the capacitor is obtained as

  
vC ( t ) =

1

C
i dt

0

t

∫ = V s ( 1 − e
−

1

RC
t

)

It is obvious from this relationship that the time constant of an RC load is

  τ = RC

The rate of change of the capacitor voltage is

  

dvC

dt
=

V s

RC
e

− 1

RC
t

The initial rate of change of the capacitor voltage (at t=0) is obtained as

  

dvC

dt
t=0

=
V s

RC

The capacitor voltage and current responses are shown in Figure (4).

Diodes With RL Loads
Consider the diode circuit with an RL load shown in Figure (5).

Figure (5): An RL circuit

When switch S1 is closed at t=0, the current I through the inductor is expressed
as

  V s = vR + vL
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= vR + L

di

dt

  vR = R i

Thus for i(0)=0, the current through the conductor is obtained as

  

i( t ) =
V s

R
1 − e

− R

L
t 

 
 
 

 

 
 
 

The voltage across the inductor is obtained as

  
vL( t ) = L

di

dt
= V se

− R

L
t

It is obvious from this relationship that the time constant of an RL load is

  
τ =

L

R

The rate of change of the current is obtained as

  

di
dt

=
V s

L
e

−
R

L
t

The initial rate of change of the current (at t=0) is obtained as

  

di
dt t =0

=
V s

L

The inductor voltage and current responses are shown in Figure (5).

Analysis

For
  
t >>

L

R
= τ ,   vL → 0  and 

  
i → I s =

V s

R
.

If S1 is opened, then the energy stored in the inductor is
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  EL = 0.5L i
2

This energy is transformed into a high reverse voltage across the switch. In this
case the diode D1 is likely to be damaged in this process. To overcome this
problem a diode commonly known as a freewheeling diode is connected across
an inductive load as shown in Figure (6).

Figure (6): Circuit with a Freewheeling Diode

Freewheeling Diodes

Consider the RL circuit shown in Figure (6). If the switch S1 is closed for time t1,
a current is established through the load.  If then the switch is opened, a path
must be provided for the current in the inductive load.

This is normally done by connecting a diode called a freewheeling diode Dm as
shown in Figure (6).

The circuit operation can be divided into two modes:

Mode 1:
This mode begins when the switch is closed at t=0 until the switch is opened.
This duration is denoted by t1. During this mode, the diode current is

  

i1( t ) =
V s

R
1− e

− R

L
t 

 
 
 

 

 
 
 

When the switch is opened at t=t1, the current becomes

  

I1 = i
1
( t = t1 ) =

V s

R
1 − e

− R

L
t1

 

 
 
 

 

 
 
 
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If t1 is sufficiently long, the current reaches a steady-state value of

  
I s =

V s

R

Mode 2:
This mode begins when the switch is opened and load current starts to flow in
the freewheeling diode Dm.  The current through the freewheeling diode is found
from

  
0 = L

di 2

dt
+ R i2

with the initial condition   i2 ( t = 0 ) = I1 . The solution to this equation gives

  i2 ( t ) = I 1e
−

R

L
t

and this current decays exponentially to zero at   t = t 2  provided that   t2 >> L / R .
The currents responses are shown in Figure (6).

Example 3
A diode circuit is shown in Figure (7) with   R = 44 Ω  and   C = 0.1 µF .  The
capacitor has an initial voltage   V 0 = 220  V . If switch S1 is closed at t=0,
determine:

(a) the peak diode current
(b) the energy dissipated in the resistor R
(c) the capacitor voltage at  t = 2 µs .

Figure (7): An RC circuit

Solution
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The waveforms are shown in Figure (7).

(a) From the relationship

  
i( t ) =

V s

R
e

−
1

RC
t

the peak value of the diode current is obtained by using   V s = V 0 .  Thus

  
I p =

V 0

R
=

220

44
= 5 A

(b) The energy dissipated is

  
E = 0.5CV

0

2 = 0.5x0.1x10 −6 x220 2

or

  E = 2.42  mJ

(c) For   RC = 44 x0 .1 = 4.4µs  and   t = t 1 = 2 µs, the capacitor voltage is

  vC ( t = 2µs ) = V 0e
−

1

RC
t

or

  = 220 xe
−

2

4 .4 = 139 .64  V

Diodes With LC Load
A diode circuit with an LC load is shown in Figure (8).
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Figure (8): LC Circuit

When the switch S1 is closed at t=0, the charging current i of the capacitor is
expressed as

  
V s = L

di

dt
+

1

C
i  dt∫ + vC ( t = 0 )

with initial conditions i(t=0)=0 and   vC ( t = 0 ) = 0 . Laplace transform gives

  

V s

s
= L s I ( s ) +

1

Cs
I ( s )

or

  

I ( s ) =
V s

L s2 +
1

LC

 

 
 

 

 
 

Inverse Laplace Transform gives

  
i( t ) = V s

C

L
 sin ωt = I p sin ωt

where 
  
ω =

1

LC
.

The peak current is

  
I p = V s

C

L
 

The rate of rise of the current is obtained from

  
i( t ) = V s

C

L
 sin ωt = I p sin ωt

  

di
dt

=
V s

L
cos ωt

From this, the initial rate rise of the current (at t=0) is obtained as
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di
dt t =0

=
V s

L

The voltage across the capacitor is derived as

  
vC ( t ) =

1

C
idt = V s ( 1 − cosωt )

0

t

∫

At time  t = t 1 = π LC , the diode current i decays to zero and the capacitor is
charged to   2V s .  The waveforms for the voltage   vL  and the current i are shown
in Figure (8).

Example 4
A diode circuit with an LC load is shown in Figure (9a) with the capacitor having
an initial voltage 220 V. The capacitance is   C = 20  µF  inductance is

  L = 80  µH . If switch S1 is closed at t=0, determine:

(a) the peak current through the diode.
(b) the conduction time of the diode.
(c) the steady-state capacitor voltage.

Figure (9a,b); fig 3.3

Solution (a)
Using Kirchoff’s voltage law gives

  
L

di
dt

+
1

C
i dt∫ + vC ( t = 0 ) = 0

With initial conditions i(t=0)=0 and  vC ( t = 0 ) = −V 0 , the current i is obtained as
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i( t ) = V 0

C

L
sin ωt

where

  
ω =

1

LC
=

10 6

20 x80
= 25 ,000  rad / s

The peak current is therefore obtained as

  
I p = V 0

C

L
= 220

20

80
= 110  A

Solution (b)
At   t = t 1 = π LC , the diode current becomes zero and the conduction time is

  t1 = π LC = π 20 x80  x10
-6 = 125 .66  µs

(c) The capacitor voltage can be obtained as

  
vC ( t ) =

1

C
i dt∫ − V 0 = −V 0 cos ωt

or

  vC ( t = t1 = 125 .66 µs ) = −220 cos π = 220  V

The waveforms are shown in Figure (9b).

Diodes with RLC Loads
A diode circuit with an RLC load is shown in Figure (10).

Figure (10): An RLC Circuit

When the switch S1 is closed at t=0, the charging current i is expressed as
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V s = L

di

dt
+

1

C
i dt∫ + vC ( t = 0 ) + Ri

with initial conditions i(t=0) and   vC ( t = 0 ) = V 0 .

Differentiating and dividing by L gives

  

d 2i

dt 2
+

R

L

di

dt
+

1

LC
i = 0

Laplace transform gives

  
s 2 +

R

L
s +

1

LC
= 0

The roots of this equation (called characteristic equation) are obtained as

  
s1,2 = −

R

2L
±

R

2 L

 

 
 

 

 
 

2

−
1

LC

Define:

  
α =

R

2 L
 ( this is called the damping factor) and

  
ωn =

1

LC
(this is called the natural frequency).

The roots of the characteristic equation may now be expressed as

  
s1,2 = −α ± α2 − ω

n

2

Thus three possible solutions for the current are obtained as

Solution 1:

  α = ω n . This means that the roots are real and equal (  s1 = s2 ) and the current
response is

  
i( t ) = A1 + A2t( )es1t
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This response is called critically damped.

Note that the constants   A1 and   A2 are determined from the initial conditions of
the circuit.

Solution 2:

  α > ω n . This means that the roots are real but different in magnitude and the
response is

  i( t ) = A1e
s1t + A2e

s2t

This response is called overdamped.

Solution 3:

  α < ω n . This means that the roots are complex-conjugate (  s1,2 = −α ± jω d ) and
the response is

  
i( t ) = e−αt A1 cos ω dt + A2 sin ω dt( )

This response is called damped sinusoidal.

Note that   ω d  is called the damped frequency and given as

  
ω d = ω n 1 −

α
ω n

 

 
 

 

 
 

2

If we define the damping ratio as

  
η =

α
ωn

=
RC

2 L
then

  ω d = ω n 1 − η2

Example 5
A diode circuit with an RLC load is shown in Figure (11). The source voltage is

  V s = 220  V . The capacitance is   C = 0.05 µF  inductance is   L = 2 mH  and the
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resistance is   R = 160  Ω . The initial value of the capacitor voltage is   V 0 = 0 . If
switch S1 is closed at t=0, determine:

(a) an expression for the current i(t) and sketch i(t).
(b) the conduction time of the diode.

Figure (11): An RLC Circuit

Solution
The damping factor and the natural frequency are first obtained as

  
α =

R

2 L
=

160 x103

2x 2
= 40 ,000  rad / s

  
ω n =

1

LC
=

1

2x10 −3 x0.05 x10 −6
= 105  rad / s

The damping ratio and the damped frequency are then determined as

  
η =

α
ωn

=
40 ,000

100 ,000
= 0.4

  ω d = ωn 1 − η2 = 10 5 1 − 0 .16 = 91,652  rad / s

Since   α < ω n , the current response is underdamped and given as

  
i( t ) = e−αt A1 cos ω dt + A2 sin ω dt( )

At t=0 we have

  
i( t = 0 ) = 0 = 1 A1 cos0 + A2 sin0( )= A1
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Thus the solution is

  
i( t ) = e

−αt
A2 sin ω dt( )

Taking the first derivative gives

  

di
dt t =0

= e
−αt

A2 cos ω dt − αA2 sin ω dt( )
t =0

or

  

di

dt
t =0

= ω d A2 =
V s

L

From this we evaluate A2 as

  

di

dt t =0

= A2 =
V s

ω d L
=

220 x1000

91,652 x2
= 1.2

The expression for the current is therefore obtained as

  
i( t ) = 1.2 sin 91,652t( )e−40 ,000 t

 A

A sketch of the current waveform is shown in Figure (12).

Figure (12)

(b) The conduction time t1 of the diode is obtained when the current i falls to
zero.  This happens when   sin( 91,652t1 ) = 0 . Or when
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  91,652t1 = π

From this

  
t1 =

π
91,652

= 34 .27  µs


